
Final Report

Title: Towards Next Generation WWW: Push, Reuse and Classification

Contract Number: FA5209-05-P-0253

AFOSR/AOARD Reference Number: AOARD-054033

AFOSR/AOARD Program Manager: Tae-Woo Park, Ph.D.

Period of Performance: 01 01 2005 – 30 06 2006

Submission Date: 04 08 2006

PI: Dr. Byeong Ho Kang/University of Tasmania
CoPI: Professor Paul Compton/University of New South Wales
 Professor Hiroshi Motota/Osaka University

 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
05 AUG 2006

2. REPORT TYPE
Final Report (Technical)

3. DATES COVERED
 23-02-2005 to 30-06-2006

4. TITLE AND SUBTITLE
Towards Next Generation WWW: Push, Reuse and Classification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Byeong Ho Kang

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Tasmania,GPO Box 252-100,Hobart TAS
7001,Australia,AU,7001

8. PERFORMING ORGANIZATION
REPORT NUMBER
AOARD-054033

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The US Resarch Labolatory, AOARD/AFOSR, Unit 45002, APO, AP,
96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD/AFOSR

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The major problem of the current WWW technology is that it is based on the ?pull? style of information
delivery, where the uploaded information waits for visitors, and not the ?push? style (Franklin and Zdonik
1998), where the new information is delivered to the users when it becomes available. Although there are
several research studies focusing on the development of ?push? based information delivery, these studies
overlook following two important functions: Firstly, many of the new studies are not concerned with
existing HTML documents. It is not wise to expect that all people will follow the new suggested
representation like XML or RSS and will convert their existing information to the new format. Secondly,
the information classification system is the other issue. Without using the appropriate classification system,
people find that delivered information is often redundant. Therefore, an automated classification system
that selects only the relevant information for each user is required. The main research task for this system
is how to implement the incremental knowledge acquisition process for the classification knowledge
because human classification knowledge is always heuristic and changes rapidly and, therefore, it is
necessary to maintain the knowledge base incrementally.

15. SUBJECT TERMS
Data Mining, Knowledge Acquisition, Web Services

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

56

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Table of Contents

1. Executive Summary …………………………………………………………... 2

2. Objectives …………………………………………………………… 3

3. System Report …………………………………………………………… 3

4. Abstract …………………………………………………………… 5

5. Personnel …………………………………………………………… 5

6. Publications …………………………………………………………… 6

7. Interactions …………………………………………………………… 6

8. Appendix

A. The paper published in ITNG

B. The paper published in AI 2006

C. Program Manual

 2

Towards Next Generation WWW: Push, Reuse and Classification

1 Executive Summary

The main purpose of this project is the use of the Ripple Down Rules and advanced Web

technologies to provide the push based Web information services. Although the Web technology has
been favoured by many users and it is one of the largest Internet services, the limitations of the base
technology hinder the developer from developing further services. The main problem of Web technology
is that information providers can not push the information to clients but has to wait for the requests. This
means that the clients should know where the information is and when the information is available. One
main suggestion to overcome this problem is the introduction of ‘Push” based information services such
as RSS. However, there are two main problems in this approach. One is that it only handles XML
documents and the other is the classic information overflow caused by providers.

This project proposes the integration of the flexible HTML processing technology and information

classification technology by Ripple Down Rule method, the incremental knowledge acquisition method
grown from the expert system area. In addition to the monitoring and classification technology, this
project includes the flexible delivery system for collected information. The project has been motivated by
the previous prototype system developed by MCRDR research group in University of Tasmania initially
and two partners, Prof. Paul Compton (University of New South Wales) and Prof. Motodoa (Osaka
University) joined this project. The current project is funded by AOARD from early 2005 and AOARD
has organized the collaboration research with AFRL in ROME.

Three main PIs visited Air Force Research Lab, ROME in February, 2005 and introduced this project to
the information research group in ARL leaded by Dr. John Salerno. Dr Kang (UTAS) and Dr. Park
(AOARD) visited ARL in October 2005 and further discussion was held to set up a new project based on
the current project. The new project “Personal Assistant for Web Searches: Multi-Tasking and
Monitoring” has been approved by AOARD in middle of 2006 and we plan to continue the collaboration
with ARL through the new project.

In the middle of 2005, the prototype system was introduced to the team who were maintaining the
Tasmanian State Government Web Page http://www.service.tas.gov.au/. The project team set up the
information tracking service by using one of the suggested modules in this project. This tracking service
can monitor about 270 Australian Government Web pages every one or two hours and can collect new
information to the local server. The service has been used for about one year and the system is still in
routine service.

The project team also has tested more than 5 different general information domains for this system,

health, IT, security, conference information and so on. A few papers has beenpublished and more papers
are under progress as an outcome of this project.

The project team are very glad to complete this project with successful outcomes and continue the

further project with AOARD. We greatly appreciate the program manager Dr. Tae Woo Park and staffs
in AOARD for their support and help through out this project. Also, we also appreciate the warm
hospitality of ARL while we were visiting ARL for the seminar and their support. We are very impressed
with the current personal meta-search engine project in ARL and we think that there is good potential
between the two teams.

2

http://www.service.tas.gov.au/

Towards Next Generation WWW: Push, Reuse and Classification

2. Objectives
The aim of this project is to investigate new approaches for the development of ‘push’ based WWW
information service systems in a specialized domain. We have been developed an intelligent Web
information management system to test an idea of new approaches. The system consists of following
three components:

- Web information monitoring (Monitoring Server): Monitors target web sites regularly.
- Information classification (MCRDR Classifier): Classifies collected information
- Information delivery (Information Delivery Server: IDS): Delivers information to users
The Monitoring Server revisits target Web sites periodically and automatically reports new

information of those Web sites. This component supports automated and timely information
gathering. MCRDR classifier supports automated document classification using Multiple
Classification Ripple Down Rules (MCRDR), an incremental knowledge acquisition method.
This approach is beneficial because even naïve user can incrementally build classification rule
base without help from knowledge engineer. Lastly, the IDS can support information sharing by
providing information via various methods. In this research we focus on the fully automated
Web portal publication system by using the Monitoring Server and MCRDR Classifier. The
main aim of this project is how the developed push technology can be used in a specialized
domain and how to deliver the information effectively to different users.

3. System Report

1) System analysis and design

We divided the whole system into several sub-systems because it is easy to solve the problem
in a small size and helps to check progress easily. Table 1 summarizes the requirements of the
sub-systems.

Table 1. Sub-systems lists of the target system

Components Sub-systems
Monitoring

Server/
iWebServer in
User Manual

• Web site registration sub-system: users can register Web sites to be
monitored.

• HTTP request generator sub-system: this module sends HTTP request to the
target Web servers.

• Monitoring Server scheduler sub-system: users can set up monitoring
schedule

MCRDR
Classifier/

iWebClient in
UserManaul

• HTTP message analysing sub-system: this module parses HTTP response
messages

• Feature extracting sub-system: this module eliminates noise data in the
HTML sources and represents documents features

• Knowledge acquisition sub-system: this module helps to create rule base
and maintain it without help from knowledge engineer, which is
implemented with MCRDR knowledge acquisition algorithm.

IDS/iWebPortal • Web portal generating sub-system: this module automatically generates
Web portal based on the Monitoring Server or the MCRDR Classifier.

3

Towards Next Generation WWW: Push, Reuse and Classification

2) Implementations

• The Monitoring Server and the MCRDR Classifier are implemented with C++ programming
language and MySQL database system and run on the Windows operating system. We separate
Monitoring Server from MCRDR Classifier to handle multiple domains effectively.

• The IDS is implemented with PHP programming language and MySQL database system and run
on the Window or Linux system with Apache Web server. The current design focuses on easy
maintenance for Web publication.

3) Systems in routine use

• Systems are completed and demonstration sits is now under operation:
http://www.comp.utas.edu.au/iWeb

• Systems are tracking Australian Government Web Sites Information (270 Web pages) for

Tasmanian State Government Web Page (http://www.service.tas.gov.au/)
http://www.comp.utas.edu.au/iweb/iPrj/librarynew/

• Systems are tracking IT news information from world wide newspapers for “The 19th Australian
Joint Conference on AI 2006: http://www.comp.utas.edu.au/ai06” and “Pacific Knowledge
Acquisition Workshop: http://www.comp.utas.edu.au/ai06.

4) Demonstration site is available from: http://www.comp.utas.edu.au/iWeb

5) System Setup Manual is included in Appendix and software systems are included in this

report. Please note that the user requires to install Apache Web Server includingand MySQL
(Ver 4.xxxx). The configuration of these severs can be different in various systems. If you
have any problem to install included software, you can contact:

 Dr. Tae Woo Park (AOARD)
 Email: tae-woo.park@aoard.af.mil
 Phone: +81 3 5410-4409

 Dr. Byeong Ho Kang, University of Tasmania
 Email: bhkang@utas.edu.au
 Phone: +61 3 6226-2919

 Please note that the names of software is used in the Manual is different from this document.
iWebServer, iWebClient and iWebPortal is used in the user manual respectively “Mon Server”, “MCRDR
Classifier” and IDS.

4

http://www.comp.utas.edu.au/iWeb
http://www.service.tas.gov.au/
http://www.comp.utas.edu.au/iweb/iPrj/librarynew/
http://www.comp.utas.edu.au/ai06
http://www.comp.utas.edu.au/iWeb
mailto:tae-woo.park@aoard.af.mil
mailto:bhkang@utas.edu.au

Towards Next Generation WWW: Push, Reuse and Classification

4. Abstract
The major problem of the current WWW technology is that it is based on the ‘pull’ style of

information delivery, where the uploaded information waits for visitors, and not the ‘push’ style

(Franklin and Zdonik 1998), where the new information is delivered to the users when it

becomes available. Although there are several research studies focusing on the development of

‘push’ based information delivery, these studies overlook following two important functions:

Firstly, many of the new studies are not concerned with existing HTML documents. It is not wise

to expect that all people will follow the new suggested representation like XML or RSS and will

convert their existing information to the new format. Secondly, the information classification

system is the other issue. Without using the appropriate classification system, people find that

delivered information is often redundant. Therefore, an automated classification system that

selects only the relevant information for each user is required. The main research task for this

system is how to implement the incremental knowledge acquisition process for the classification

knowledge because human classification knowledge is always heuristic and changes rapidly and,

therefore, it is necessary to maintain the knowledge base incrementally.

5. Personnel
Principle Investigators

Dr. Byoeng Ho Kang
University of Tasmania

Co-Principle Investigators
Prof. Paul Compton
University of Tasmania

Prof. Hiroshi Motoda
University of Tasmania

Research Students

Yang Sok Kim
Ph.D Student, School of Computing, University of Tasmania

Sung Sik Park
Ph.D Student, School of Computing, University of Tasmania

5

Towards Next Generation WWW: Push, Reuse and Classification

6. Publications: Papers are attached in Appendix
Gil Cheol Park, Seok Soo Kim, Gun Tae Bae, Yang Sok Kim and Byeong Ho Kang (2006).
An Automated WSDL Generation and Enhanced SOAP Message Processing System for
Mobile Web Services. Third International Conference on Information Technology: New
Generations (ITNG 2006), Las Vegas, Nevada, USA.

Yang Sok Kim, Young Ju Choi, Sung Sik Park, Gil Cheol Park, Seok Soo Kim and Byeong
Ho Kang (2006) Knowledge Acquisition in Open-ended Document Classification Problem.
The 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia (Under
Review)

7. Interactions
Research collaboration meeting with the meta-search engine research team under Dr. John
Salerno in Air Force Research Lab in Rome.

Sample demo Web site development meeting with Dr. Park, Tae Woo from AOARD and
email communications to survey the requirements from the field.

6

Appendix 1. The paper published in ITNG

Gil Cheol Park, Seok Soo Kim, Gun Tae Bae, Yang Sok Kim and Byeong Ho Kang (2006).
An Automated WSDL Generation and Enhanced SOAP Message Processing System for
Mobile Web Services. Third International Conference on Information Technology: New
Generations (ITNG 2006), Las Vegas, Nevada, USA.

An Automated WSDL Generation and Enhanced SOAP Message Processing
System for Mobile Web Services*

Gil Cheol Park1, Seok Soo Kim1, Gun Tae Bae1, Yang Sok Kim2 and Byeong Ho Kang2

1School of Information & Multimedia, Hannam University
133 Ojung-Dong, Daeduk-Gu, Daejeon 306-791, Korea

gcpark@mail.hannam.ac.kr
2School of Computing, University of Tasmania

Sandy Bay, Tasmania 7001, Australia
{yangsokk, bhkang}@utas.edu.au

* This work is supported by the Asian Office of Aerospace Research and Development (AOARD) (Contract Number:
FA5209-05-P-0253)

Abstract
Web services are key applications in business-to-business,
business-to-customer, and enterprise applications
integration solutions. As the mobile Internet becomes one
of the main methods for information delivery, mobile Web
Services are regarded as a critical aspect of e-business
architecture. In this paper, we proposed a mobile Web
Services middleware that converts conventional Internet
services into mobile Web services. We implemented a
WSDL (Web Service Description Language) builder that
converts HTML/XML into WSDL and a SAOP (Simple
Object Access Protocol) message processor. The former
minimizes the overhead cost of rebuilding mobile Web
Services and enables seamless services between wired
and wireless Internet services. The latter enhances SOAP
processing performance by eliminating the Servlet
container (Tomcat), a required component of typical Web
services implementation. Our system can completely
support standard Web Services protocol, minimizing
communication overhead, message processing time, and
server overload. Finally we compare our empirical
results with those of typical Web Services.

1. Introduction

As the Internet potentials of the mobile Internet are
widely understood, mobile Internet services become a
major mediator in information delivery and in business
transactions. Mobile Internet services, however, still have
physical devices, network and content limitation. Firstly,
mobile devices are limited by system resources such as
smaller screens and less convenient input devices.
Secondly, wireless networks have less bandwidth, less
connection stability, less predictability and a lack of
standardized and higher costs [1, 2]. Lastly, mobile
Internet services also have content limitation because the

amounts of available mobile content are still smaller than
that of wired Internet services, and the consistency
between wired and wireless Internet services is very
critical. Physical device and network limitation make
supporting common Internet standards, such as HTML,
HTTP, and TCP/IP, difficult because they are inefficient
over mobile networks. Therefore, new protocols such as
WAP (Wireless Application Protocol) and WML
(Wireless Markup Language) are proposed to overcome
these limitations. Content limitation encourages
researchers to find methods that support reuse of current
wired Web information. Some researchers focus on the
conversion of HTML documents to mobile Internet
serviceable WML documents and direct access to
databases, to provide efficient information delivery in the
wireless environment [3-7]. However, these researchers
do not focus on the capability that allows applications to
interact over the Internet in an open and flexible way, but
on the capability that provides dynamic wireless Internet
service according to different network and device
environments. The former goal can be achieved by Web
Services, because interactions between Web Services
applications are expected to be independent from the
platform, programming language, middleware, and
applications involved. For this reason, Web Services is
regarded as key applications in business-to-business,
business-to-customer, and enterprise applications
integration solutions [8].

In this paper, we focus on the following two issues:
Automated HTML/XML conversion to WSDL: The

goal system should dynamically generate WSDL files
from existing HTML/XML files. A markup language
converting system is implemented to convert
HTML/XML to WSDL automatically.

Improve SOAP processing efficiency: One main
limitation of Web Service is its inefficient performance

compared with other distributed computing approaches
like Java RMI, CORBA, and DCOM (Distributed
Component Object Model). The use of HTTP and XML
represents a significant increase in run-time cost Web
Services solutions [9-13]. We propose a method that
enhances SOAP processing by changing service
architecture. The typical SOAP processing system
requires the Web Servlet container (e.g. Tomcat) to
execute SOAP. It requires additional process and
communication port. Our hypothesis is that if a system
processes the SOAP message directly, without help from
Web Servlet container, the SOAP performance improves.

The paper is organized as follows: Section 2
summarizes relevant research results, including HTML
conversion and Web services technology. Section 3
explains our HTML conversion implementation, while
Section 4 illustrates our SOAProc system implementation.
In Section 5 we compare our system’s performance with
the typical Web Services implementation approach.
Finally, conclusions and recommendations for further
work are described in Section 6.

2. Literature Review

Researchers usually focus on HTML/WML conversion
because the WAP is an alternative protocol for HTML in
wireless Internet services using Wireless Markup
Language (WML), a small subset of Extensible Markup
Language (XML), to create and deliver content. Kaasinen
et al. [3] and Dugas [14] suggested an HTML/WML
conversion proxy server, which converts HTML-based
Web content automatically, and on-line, to WML. Saha et
al. [6] suggested a middleware that is seamless and
transparently translates a Web site’s existing contents to
mobile devices. Kurbel and Dabkowski [4] proposed a
dynamic user tailed WML content generation by using
JSP (Java Server Pages) and JDBC-ODBC driver.
Magnusson and Stenmark [15] suggested a CMS-based
approach to visualise Web information in a PDA. Pashtan
et al. [7] stressed context-aware wireless Web services,
which can adapt their content to the user’s dynamic
content. Again, we wish to stress these researchers focus
only on HTML/WML conversion, not Web Services
compliable conversion. Therefore, in spite of their
importance, application integration aspects inside and
outside enterprises have not been seriously considered by
the researchers. As the impotence of application
integration over the Internet becomes more important,
nowadays Web Services are critical to any Internet
services. For this reason, we propose a method that
converts HTML to WSDL. The WSDL files are used to
provide Web Services with SOAP messaging protocols.
More detailed explanation about the Web Services and its
implementation issues are discussed in the following
Section.

Web Services, as defined by the W3C Web Services
Architecture Working Group, are “software applications
identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as
XML artefacts. A Web service supports direct interactions
with other software agents using XML-based messages
exchanged via Internet-based protocols.”[16]

There are several Web Services implementation
methods, which differ in their support for class binding,
ease of use, and performance [13]. Among them Apache
Axis (Apache eXtensible Interaction System) with
Tomcat is a popular implementation method. The Apache
Axis project is a follow-on to the Apache SOAP project
and currently has reached version 1.2.1, but it's not part of
the Apache SOAP project. Axis is a completely new
rewrite with emphasis on flexibility and performance. It
supports HTTP SOAP request/response generation, SOAP
message monitoring, dynamic invocation, Web service
deployment, and automatic WSDL generation for Web
services.

Figure 1- Typical Mobile Web Service Implementation

with AXIS and Tomcat

Figure 1 illustrates this standard mobile Web service
implementation. A Web Servlet container, like Tomcat, is
required to provide mobile Web services with Axis. For
wireless Internet service, the server administrator should
write MML (Made Markup Language) to parse Web
contents by using the administrative tool. A MML is used
to generate service request forms or service results by
dynamically parsing the existing Web contents and
sending them to relevant model and clients. When a client,
whether it is wireless or wired client, requests Web
service via SOAP request, Apache Tomcat transfers it to
Axis. Axis interfaces the SOAP request message into a
relevant service by using the service management
function. Service providing models are interfaced by
using a WSDL module is provided by Axis. By
implementing SOAP and distributed computing service,

the system architecture can have a lightweight thin client
structure and the service can be provided in a flexible way.
However, this implementation is not efficient because it
requires additional process for Web Servlet engine
(Tomcat) and communication port. For this reason, we
propose an alternative system that can process SOAP
messages without using Web Servlet engine.

3. HTML/WSDL converter

Our HTML/WSDL content converter system consists
of three sub-modules: the rule script, the script engine,
and the markup language converter. The rule script stores
rules for content reformatting rules, which are created by
the user with the management program. The rules include
personalization information and display structuring
information of mobile devices. Secondly, the script
engine reconstructs contents by using script rules and
client (device) information. The markup language
converter transforms markup language if the markup
language that the server provides differs from what the
client can process. Script rules are created as follows. If a
Web site address is supplied, our system reads and parses
the Web site information. The parsed information is then
presented by using a DOM tree, in which the user can
select and save node information to be served as wireless
Internet content. The JML (Java Mark-up Language)
editor defines XML tags and attributes of the saved items.
TITLE, BASEURL, LINK, HREF, CONTENT, and
ELEMENT are XML tag examples and many attributes
are also available to customize mobile contents.

Figure 2 illustrates the operation of the converter. The
user accesses the HTML/WSDL converter system via
mobile devices and mobile networks. The converter gets
the user’s mobile device information such as display size
and color, and URL information that the user requests by
using the protocol detector. After getting this information,
the converter requests URL information from the Web
server. The Web server generates a HTML response
message and sends it to protocol detector. The protocol
detector then passes this HTTP response message to the
selector with client information. The selector chooses
WSDL information from the HTTP response message by
using the script rules and returns this information to the
protocol detector. The protocol detector in turn sends this
information to the translator, which performs Mark-up
language transformation, image transformation, paging
and cashing. Lastly, the converter sends this processed
result to the user.

4. SOAP Message Processor

In the Web Services, XML based SOAP messages are
used when the clients request Web Services from the
server or when the server sends Web Service response
messages to the clients.

Figure 2- HTML/WSDL Content Converter

Operation

In the standard Web Services implementation this is
supported by Tomcat and AXIS. We developed a SOAP
message processing system, called SOAProc, because
typical architecture causes inefficiency by spawning new
process and adding additional communication port. The
SOAProc directly processes the SOAP request and
response messages without using Servlet engine. Figure 3
illustrates our Web Services system implementation
architecture, in which the SOAProc and the WSDL
builder are used. The most significant difference between
the standard system (see Figure 1) and our
implementation (see Figure 3) is that our system does not
include Tomcat. Instead of using Tomcat’s WSDL and
SOAP supporting function, WSDL files are directly
generated by the WSDL builder and SOAP messages are
processed by the SOAProc system.

Figure 3 – Mobile Web Service using the SOAProc

and the WSDL builder

4.1 SOAP Message Structure

Figure 4 illustrates an example of a SOAP message.
The Header element is intentionally omitted in this
example. <ns1: IntranetLogin …> indicates IntranetLogin
method that will be called. The tags between

Mobile
Devices

Protocol
Detector

Selector

Translator

 Content
Web

Server

<ns1:IntranetLogin…> tag are parameters of method
IntranetLogin, such as <userid> … </userid>, <pass> …
</pass>, and <sessionidtag> … </sessionidtag>.

Figure 4 - SOAP Message Example

4.2 SOAP Request Message Analysis
The algorithm that is used to analyses the method and

its parameters of SOAP request messages is as follows:
Step1: Gets the SOAP messages
The system generates a FileInputStream of

RequestSoapMessage.xml (fis).

Then the system gets the SOAP message from the

above FileInputStream.

Step2: Gets the SOAP Body
The system extracts the SOAP Body from the SOAP

message.

Step3: Analysing SOAP Body
 The system finds IntranetLogin part of

<ns:IntranetLogin …> from the Body of the SOAP
message.

The system creates array list of items between

<ns:IntranetLogin…></ ns:IntranetLogin> in the Body of
the SOAP message.

The system iteratively analyses the item list to get

MessageElement like <userid> … </userid>, <pass> …
</pass>, and <sessionidtag> … </sessionidtag>. In each
iteration, the item’s name and value are obtained by
me.getName() and me.getValue()method. For example, if
the system uses example in Figure 6, <userid … >test
</userid> is in the first item of item list and ‘userid’ and
‘test’ are name and value, which can be get by using
iterative analysis. The system can generate response
message to the clients by using this result.
4.3 SOAP Response Message Generation

Our system analyses the client SOAP request message
and sends the analyzing result to the Web server. When
the Web server system generates a HTTP response
message, our system generates a SOAP response message
by using it. In this part, we describe a response generation
algorithm, in which we assume the response result is a
string type. The response results can be sent by a single or
binary array. The result values and method namespace
value are assumed as follows.

The SOAP response message is generated as follows:
Step 1: Generate SOAP Basic Element
Our system generates the new SOAP response

message by creating a new Envelope element and Body
element.

The SOAP message that is created until now is as

follows:

Step 2: Add Content to SOAP Message
The SOAP contents are created by adding the above

results values.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv =
“http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body>

<ns1:IntranetLogin soapenv:encodingStyle
=http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="urn:wireserver">

<useridxsi:type="xsd:string">
test

</userid>
<pass xsi:type = "xsd:string">

pass
</pass>
<sessionidtag xsi:type="xsd:string">

sessionidtag
</sessionidtag>

</ns1:IntranetLogin >
</soapenv:Body>
</soapenv:Envelope>

RequestSoapMassage.xml

SOAPBodyElement sbe = env.getFirstBody();

FileInputStream fis = new
FileInputStream("RequestSoapMassage.xml")
SOAPEnvelope env = new SOAPEnvelope(fis);

SOAPEnvelope env = new SOAPEnvelope();
env.getBody(); //SOAPBody
SOAPBodyElement body = new SOAPBodyElement();

<soapenv:Envelope
xmlns:soapenv=http://schemas.xmlsoap.org/soap/enve
lope/
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body />
</soapenv:Envelope>

String str = "test1Respons";
String strElement = "test1Return";
String elementValue = "aaa";
String nameSpaceURI = "urn:stringtest";

for(int i = 0 ; i < al.size() ; i++){
MessageElement me = MessageElement)(al.get(i));
System.out.println((i+1)+" th " +
me.getName()+"‘s value is " + me.getValue());

}

ArrayList al = sbe.getChildren();

sbe.getName();

After adding the contents, the SOAP response message

is as follows:

Step 3: Error Handling
If there are any errors in the Web server processing,

the following code creates error messages.

Step 4: Add SOAP Body Element
Lastly, the following code adds the SOAP Body

element when there is no error. SOAP response
generation is completed by doing this.

Figure 5 illustrates a complete SOAP response

message that is generated by our system without Tomcat.

Figure 5 - SOAP Response Message

5. Experiment

5.1 Method

The experiment is focused on the performance
evaluation of our mobile Web service system. Two sets of
systems are prepared for our experiment. The first system
is implemented with standard Web Services architecture
as explained in Section 2. This implementation requires
Tomcat Servlet container with AXIS. The second

implementation is based on our approach. Where there is
no Servelet container with the SOAP message processing
performed by the SOAProc system and WSDL created by
the WSDL builder. We conducted a simulated
performance comparison experiment. Figure 6 illustrates
the experiment process. If a client requests Web services
by submitting a SOAP request, the experiment system
analyses the SOAP message and sends a HTTP request to
the content Web servers. If the experiment system
receives a HTTP response message form the Web server,
it generates WSDL and sends a SOAP response message
to the clients’ mobile device.

Figure 6 – Experiment System Procedure

SOAP requests are simulated by the mobile client

simulation program, which connects to the experiment
system and sends several SOAP request messages. There
are time intervals, from 1 to 10 seconds between SOAP
requests. If the connection is closed, the simulation
program continually tries to connect to the experiment
system. We assumed that there were 200 users at the same
time. SOAP requests were created by four client programs
and each program generated 50 threads at the same time.
We chose two public Web sites [www.daum.net
(dictionary) and www.yahoo.co.kr (stock)], which role as
the content Web servers in our experiment. We assumed
two kinds of specific information - dictionary and stock -
are required by the user from these Web servers. Each
service’s timeout is 30 seconds.

The following results were collected to compare two
experiment systems:

• Test time: how many seconds were consumed for
the test.

• Number of Requests: how many requests were
generated within test time.

• Connection Timeout: the connection numbers that
were not connected within the request timeout.

• Connection Refuse: the request numbers that
could not be connected because the server was
busy.

• Connection Handshake Error: the number of
session configuration failures after connection

• Connection Trial Time: How many times the
client could not connect to the server.

env.addBodyElement(rpcElement);

SOAPFault soapFault = env.getBody().addFault();
soapFault.setFaultCode("code error\n");
soapFault.setFaultActor("action error\n");
soapFault.setFaultString("string error\n");

<ns1:test1Respons
soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/"
xmlns:ns1="urn:stringtest">
<test1Return
si:type="xsd:string">aaa</test1Return>
</ns1:test1Respons>
/

RPCParam rpcParam = new RPCParam(strElement,
elementValue) ;
RPCHeaderParam rpcHeaderParam = new
RPCHeaderParam(rpcParam);
RPCElement rpcElement = new RPCElement(str);
rpcElement.addParam(rpcParam);
rpcElement.setEncodingStyle("http://schemas.xmlsoa
p.org/soap/encoding/");
 rpcElement.setNamespaceURI(nameSpaceURI);
</soapenv:Envelope>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/env
elope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<soapenv:Body>

<ns1:test1Respons
soapenv:encodingStyle="http://schemas.xmlsoap.org/
soap/encoding/" xmlns:ns1="urn:stringtest">

<test1Returnxsi:type="xsd:string">
aaa

</test1Return>
</ns1:test1Respons>

</soapenv:Body>
</soapenv:Envelope>

• Request Timeout: how many times the timeout
was exceeded.

5.2 Results

Table 1 summarizes the experiment as results, which
illustrate an enhanced performance in all categories.
Though the test time of our system is shorter than that of
the standard system, the total number of requests is
greater than that of standard system and the timeout
number is less than that of the standard system. For
example, whist the average request per second of our
system is 17.94, that of standard system is 9.64. There are
many connection errors in the standard system. Only
some portion of 200 requests is successfully connected to
the server while the others get a “refused” message from
the server. However, those kinds of connection failures do
not happen in our system.

Table 1 – Experiment Results
 SOAProc

System
Standard
System

Test time 29,400 46,200
Total Request 524,573 445,422
Connection Timeout 0 435
Connection Refused 0 18,960
Connection Handshake Error 0 513
Connection Trials 243 22,534
Request Timeout 756 119,891

6. Conclusions

Mobile Web services are critical solutions in the
Internet service integration architecture. In this research
we proposed a new Web Service architecture by
implementing two significant systems. Firstly, the
HTML/WSDL converter can support reusing current
HTML based contents. This is essential for saving
developing or maintenance costs and serving seamless
Internet services both wired and wireless. Secondly, we
proposed a new SOAP message processing system to
diminish SOAP latency problems by eliminating the
Tomcat Servelet container in the Web Services
implementation. The SOAP request and response
messages are directly processed by the SOAProc system.
We can implement an alternative mobile Web Services
system by using these two systems without violating
standard Web Services protocols. Our system can process
more service request about doubly efficient than that of
typical Web service implantation with very small
connection errors.

7. References
1. Siau, K., E.P. Lim, and Z. Shen, Mobile commerce:

promises, challenges, and research agenda. Journal of
Database Management, 2001. vol.12, no.3: p. 4-13.

2. Kim, H., et al. An Empirical Study of the Use Contexts
and Usability Problems in Mobile Internet. in 35th

Annual Hawaii International Conference on System
Sciences (HICSS'02). 2002.

3. Kaasinen, E., et al., Two approaches to bringing
Internet services to WAP devices. Computer
Networks, 2000. 33(1-6): p. 231-246.

4. Kurbel, K. and A. Dabkowski. Dynamic WAP content
Generation with the use of Java Server Pages. in Web
Databases/Java and Databases: Persistence Options
(Web&DB/JaDa). 2002. Erfurt, Germany.

5. Metter, M. and R. Colomb. WAP Enabling Existing
HTML Applications. in First Australasian User
Interface Conference. 2000.

6. Saha, S., M. Jamtgaard, and J. Villasenor, Bringing
the wireless Internet to mobile devices. Computer,
2001. vol.34, no.6: p. 54-58.

7. Pashtan, A., S. Kollipara, and M. Pearce, Adapting
content for wireless Web services. IEEE Internet
Computing, 2003. 7(5): p. 79-85.

8. Farrell, J.A. and H. Kreger, Web services management
approaches. IBM Systems Journal, 2002. vol.41, no.2:
p. 212-227.

9. Seshasayee, B., K. Schwan, and P. Widener, SOAP-
binQ: high-performance SOAP with continuous
quality management. Proceedings. The 2nd IEEE
International Conference on Distributed Computing
Systems, 2004: p. 158-165.

10. Kohlhoff, C. and R. Steele, Evaluating SOAP for high
performance applications in capital markets.
Computer Systems Science and Engineering, 2004.
19(4): p. 241-251.

11. Chiu, K., M. Govindaraju, and R. Bramley, SOAP for
High Performance Computing, in 11 th IEEE
International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC'02).
2002, Indiana University. p. 246.

12. Chiu, K., M. Govindaraju, and R. Bramley.
Investigating the Limits of SOAP Performance for
Scientific Computing. in 11th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-11 '02). 2002.

13. Davis, D. and M. Parashar. Latency Performance of
SOAP Implementations. in 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid. 2002.

14. Dugas, R., WWW Unplugged: An HTML to WML
transcoding proxy. 2001.

15. Magnusson, M. and D. Stenmark. Mobile Access to
the Intranet: Web Content Management for PDAs. in
Americas Conference on Information Systems 2003.
2003.

16. W3C, Web Services Architecture Requirements.
Web Services Architecture Requirements, 2002.

Appendix 2. The paper under review in AI 2006

Yang Sok Kim, Young Ju Choi, Sung Sik Park, Gil Cheol Park, Seok Soo Kim and Byeong
Ho Kang (2006) Knowledge Acquisition in Open-ended Document Classification Problem.
The 19th Australian Joint Conference on Artificial Intelligence, Hobart, Australia (Under
Review)

Knowledge Acquisition in Open-ended Document
Classification Problem†

Yang Sok Kim1, Young Ju Choi1, SungSik Park1, Gil Cheol Park2, and

Seok Soo Kim2

1School of Computing, University of Tasmania
Sandy Bay, Tasmania 7001, Australia

{yangsokk, Y.J.Choi,sspark}@utas.edu.au

2School of Information & Multimedia, Hannam University
133 Ojung-Dong, Daeduk-Gu, Daejeon 306-791, Korea

{sskim, gcpark}@hannam.ac.kr

Abstract. This study focused on the open-ended problem, which differs from
the close-ended one. Open-ended problem solving is characterized by the active
role of problem solvers, multiple solutions for the same problem, and the nego-
tiating interactions between the problem solver and the learner. We employed
an open-ended problem solving approach to solve a real-world document classi-
fication problem, which is an example of the open-ended problem. Our ap-
proach is implemented by MCRDR, an incremental knowledge acquisition
method. We conducted knowledge acquisition experiments with the MCRDR
based document classification system, called MCRDR-Classifier. Twenty par-
ticipants classified 12,784 articles collected from eight IT news Websites by us-
ing the MCRDR-Classifier for four months. Our experiment results show that
our approach is appropriate for the open-ended document classification prob-
lem.

1 Introduction

Knowledge acquisition is a core part of any knowledge based system; it transfers
human knowledge into the system and enables the knowledge based system to perform
human-like operations. Whenever knowledge acquisition is conducted, whether it is
conducted by either knowledge engineering (KE) approach or machine learning (ML)
approach, it is clear that the task environments and problem spaces are quietly differ-
ent among domains. Therefore, it is natural to search for an appropriate classification
system and class of problems in order to find the optimal solution for those problems.
One of the best known problem classifications is to divide problems into the close-
ended and the open-ended categories. Sometimes these are known as well-structured
and ill-structured problems, because the open-ended problems are typically ill-defined

† This work is supported by the Asian Office of Aerospace Research and Development
(AOARD) (Contract Number:FA5209-05-P-0253)

whereas the close-ended problems are well-defined [1, 2]. These two types of prob-
lems have quite different characteristics. A closed domain would be a subject area like
arithmetic, where there are often patently specified problem solving goals, correct
answers and clearly defined criteria for success at problem solving. An open-ended
domain, like writing, is where there is typically a lack of clearly defined goals, no
single correct solution to a problem and no immediately obvious criteria for making a
judgment as to what constitutes a correct solution [3, 4]. The close-ended problem
solving research has been made considerable progress and significantly contributed to
the both research and commercial community. However, it is beneficial to look into
open-ended problem solving approach because most people share the intuition that
there are important differences in these two types of problem solving approach. It is
not a priori clear that the results from the close-ended research will generalize the
open-ended domains [3].

In this research, we studied knowledge acquisition in an open-ended document

classification problem. Though there is recent research in the open-ended problem
spaces, the traditional document classification is a close-ended problem. The goal of
document classification is to classify unseen cases efficiently into pre-defined catego-
ries (classes) by using specific algorithms. Data (cases) used for the study are pre-
processed and usually have assigned class or classes. Some parts of these data are
used to train classifiers and the other parts are used to test the classifiers performance.
The classes that the cases are classified into are also pre-defined. The performance of
each classifier is measured by the well developed evaluation metrics such as precision
and recall. However, the real-world document classification is an open-ended problem
though its goal is very similar to that associated with traditional classifications. Cases
that should be classified are not known until they are presented and classes are not
pre-defined and continually evolve as time passes. Some parts of classes newly appear
in the problem space and the other parts of classes are depreciated. In addition, it is
very difficult to use traditional performance metrics to decide the success of classifiers.
For these reasons, we needed to employ a method that differs from the traditional
document classification approach. To this end, we explored the open-ended education
experiences because the open-ended problem-solving approaches have been employed
in the education area for a long time[5]. We employed the MCRDR (Multiple Classi-
fication Ripple-Down Rules) method as an implementing method for the open-ended
document classification system.

This paper consists of the following contents. We used some insights from the

open-ended education because the open-ended approaches were tried in the education
as an alternative of traditional education. Their contribution to our study is discussed
in the Section 2. The background information about the MCRDR method is described
in Section 3 and implementation details of our document classifier, called MCRDR-
Classifier, is in Section 4. Inference process and knowledge acquisition in the
MCRDR-Classifier are discussed in Section 5 and Section 6. We conducted real-
world document classification experiments with our classifier and analyzed knowledge
acquisition behaviors in the open-ended domains. Section 7 explains our experiment

design and Section 8 summarizes experiment results. Conclusions of this paper are
described in the Section 9.

2 Insights from the Open-Ended Education Experience

Open-ended problem solving approaches have been studied in the education area as
an alternative to the traditional education method. It was beneficial for us to examine
their experience to get some insights into problem solving of knowledge acquisition
problem. According to the open-ended educationist, in the open-ended domains like
music composition or writing, the learning goal is not fixed, but may change during
the course of the negotiation process. The open-ended domain usually requires some
form of open interactions between teacher and learner. This shifts the emphasis away
from the assertion of facts and towards interactions that encourage the type of creative,
meta-cognitive and critical thinking [4, 5]. In this research, we focused on three in-
sights listed below and examine why they are also very important in the open-ended
knowledge acquisition.

Insight (a) Active Role of Problem Solver: The open-ended approach in educa-

tion emphasizes the active role of the teacher (problem-solver) in the problem process
[5]. There are two different approaches in the knowledge acquisition: the constructiv-
ist approach vs. the rational/objectivist approach. This latter approach defines a prob-
lem as the observable gap between a given goal, or predefined standards of perform-
ance, and the present state of affairs ignoring the presence of the problem-solver. At
the very least, it reduces the problem-solver to a container for replicable problem-
solving procedures. The former approach reflects a view which recognizes the prob-
lem-solver as central to problem solving and knowledge is only used as it is seen
through the eyes of the problem-solver. [6, 7] The open-ended education approach is
philosophically similar to that of the constructivist approach in that both of them em-
phasize the active role of the problem solver. Therefore, the promising KA tools
should help the problem solvers to perform easy KA. We did not employ the machine
based approaches, because they basically remove the problem solver from the problem
solving process, moreover the problem solver cannot directly affect the problem solv-
ing process. Instead, we employed a rule-based knowledge engineering approach and
made the problem solvers directly interact with the KA tool to encourage the problem
solver to perform knowledge acquisition more actively.

Insight (b) Multiple Solutions for the Same Problem: The learning goal of

open-ended education is not fixed, but may change according to context. The problem
solvers may recognize the same context in different ways because there are individual
differences in human cognition such as short-term and long-term memory, verbal
processes, and solution strategy [8]. Moreover, each problem solver can provide dif-
ferent solutions even though they interpreted the context in the same way. The con-
structivist knowledge acquisition is based on similar assumptions. It assumes that “the
goal may be shared with others but there may be numerous individual methods of

reaching the goal.”[6] In the classification problem, this has a two-fold meaning. On
one hand, it means that (1) a case can be classified into multiple classes without
making dissatisfactions among the problem solvers. On the other hand, (2) multiple
cases can be classified into one class because of different reasons.

Insight (c) Importance of negotiating interaction: The negotiating interactions

between the problem solver and the learner are very important in open-ended educa-
tion. The negotiations are related to the level and/or amount of knowledge that is
transferred from the problem solver to the learner. The problem solver only provides
additional knowledge when the learner can understand or use that knowledge suffi-
ciently. In the course of education, these understanding are incremental and interactive
process. As the problem solver knows more about the domain and the learners, he/she
can transfer more knowledge to the learner [1, 4, 5, 9]. We can view the knowledge
based system as the learner in the KA process because the outputs from the system are
continually evaluated by the problem solvers. This evaluation processes continues
until the problem solver completely satisfies the system’s suggestions. In addition, the
problem solver usually increases his/her understanding about the domain incremen-
tally while he/she transfers his/her knowledge to the system. Therefore, as the problem
solver in an education environment provides his/her knowledge to the learner incre-
mentally, the problem solver in the knowledge acquisition environment usually trans-
fers his/her knowledge into the system gradually to manage current salient cases. From
this point of view, the knowledge acquisition is not a once-for-all process, but a con-
tinual process, and knowledge is continually patched by new knowledge. Therefore,
the KA system should support this kind of patching work effectively [7].

3 MCRDR

We employed MCRDR (Multiple Classification Ripple-Down Rules) to implement
an open-ended KA tool for the document classification system. It is proposed to over-
come the knowledge acquisition problem based on a maintenance experience of a real
world medical expert system called GARVAN-ES1 [10, 11]. The MCRDR method is
based on constructivism and focuses on the problem solvers emphasizing their direct
problem solving, not the indirect problem solving by the knowledge engineer.[12]
Knowledge in the MCRDR systems is regarded as not permanent but temporary,
which means current knowledge is true only if the new situation is consistent with the
old one. The problem solver interacts with the KA system improving its problem solv-
ing capability incrementally. Therefore, maintenance of the knowledge base is a core
process of the KBS development, not the additional process or aftermath of the devel-
opment. [11] For these reasons, easy knowledge base (KB) maintenance is a key goal
of the MCRDR based system.

The MCRDR KB is an n-ary tree structure. MCRDR uses a “rules-with-

exceptions” knowledge representation scheme because the context in the MCRDR is
defined as the sequence of rules that were evaluated as leading to a wrong conclusion,

or no conclusion, with the existing knowledge base [13]. This approach makes main-
tenance easier than that of the traditional approach because the maintenance process
only takes place in relation to current rule and its children rules. A classification rec-
ommendation (conclusion) is provided by the last rule satisfied in a pathway. All chil-
dren of the satisfied parent rule are evaluated, allowing for multiple conclusions. The
conclusion of the parent rule is only given if none of the children are satisfied [13-15].
There are two types of rule. The refining rule is placed under the root rule or other
rules to refine current rule and the stopping rule is placed under the root rule or other
rules to stop current rule. Each rule is created when the problem solver dissatisfies
current inference result and wants to make an exception for the current rule. The cases
used for the rule creation are called “cornerstone cases” and are saved while the new
rule is created. The cornerstone cases help the problem solver by showing cases in-
stead of abstracted rules, because the classification context can be easily retrieved
with the cases. In addition to the cornerstone case, MCRDR uses a difference list to
support easy KB maintenance. The difference list is created by the comparing current
case’s attributes with those of the relevant rule’s cornerstone cases. The scope of the
relevant rule is the current firing rule and its children rules. The MCRDR systems
make even naïve domain experts maintain a very complicated knowledge base without
the knowledge engineer’s help [7, 12]. A prior study shows that the MCRDR method
guarantees low cost knowledge maintenance in the real world domain [13, 16].

4 MCRDR Document Classification System (MCRDR-Classifier)

A document classification system is implemented with the MCRDR algorithm
(MCRDR-Classifier), C++ program language, and MySQL database. A Website
monitoring system, called WebMon, continually provides newly updated documents
from the targeted Websites. The WebMon detects new information, pre-processes it to
extract core content from the Webpage source, and provides it to the MCRDR-
Classifier. Detailed explanations are described in [17, 18].

Fig. 2. illustrates the MCRDR-Classifier’s main user interface. The left pane

shows the tracking Websites (�) that are selected by the problem solver and the clas-
sification structure of the problem solver (�). The problem solver can choose his/her
favorite tracking Websites that are maintained by WebMon. When the problem solver
selects one Website in the list, the newly collected documents that are ordered by
collected time are displayed in the right upper pane (�). When one document is se-
lected, the content of the document is displayed in the content pane (�) with a de-
tailed explanation of inference results (�) and the inference results in � by displaying
downward arrow (s). The problem solver can see the documents that are classified into
the specific class (folder) by selecting the folder from�. The conditions of fired rule
sets are also displayed and by selecting the condition tap in the explanation box (�)
and they are also highlighted in the content pane (�). More detailed inference proce-
dures are explained in the following section.

One important thing is that the MCRDR classifier supports multiple classifications.
For example, there are two destine folders (Mobile game and Handset Manufacturer)
for the document “Mobile games 'stagnating,' study claims”. In this case two inde-
pendent rules are used to classify this document into two different folders. In the other
case, one document can be classified into one destine folder by multiple rules. The
figure that displays this case is not included in this paper due to the lack of space.

Fig. 2. Main Interface of the MCRDR-Classifier

5 Inference Process of the MCRDR- Classifier

Basically, the inference process implementation of the MCRDR-Classifier follows
the MCRDR method that is described in [19]. The WebMon continually revisits target
Websites and report newly found hyperlinks as new information. The hyperlink text is
used as “Title” in the MCRDR-Classifier because though it may or may not match
with the title of the hyperlinked document, it is usually employed to represent the
hyperlinked document. The hyperlinked document contains not only the main content
but also noisy or redundant content such as advertisements, navigation or decorative
content. Though we can use other features such as hyperlinks in the hyperlinked
documents and document structure to enhance classification performance, we only use
the main content as a feature of the hyperlinked document. Therefore, the content
extraction or noisy elimination method is one of main issues. We employed a redun-
dant word/phrase noisy elimination method, which is discussed in [20].

�Websites
List

�Classification
Structure

� Document
list

� Content
Pane

� Inference
Result

A case is defined by attributes as follows:
CASE = T ∪ B

, where T is a distinct word set of hyperlink text and B is a distinct word set of the
main content of the linked document. T and B are respectively defined as T = {t1, t2,
…, tN} and B = {b1, b2, …, bM}, where N and M are the number of distinct word and N,
M is greater that 0 (N, M ≥ 0). ti and bj are a word in the hyperlink text and the main
text of the hyperlinked document.

A rule structure is defined as follows:
 IF
 (TC ⊂ T) AND (BC ⊂ B) AND (AC ⊂ T or AC ⊂ B)
 THEN
 Classify into folder Fi

, where TC is a condition set for the hyperlink text, BC is a condition set for the
hyperlinked document, and AC is a condition set for the hyperlink text or the hyper-
linked document. Each set is defined as TC = {tc1, tc2, …, tcX}, BC = {bc1, bc2, …,
bcY}, and AC = {ac1, ac2, …, acZ}, where tci is the word in the hyperlink text, bcj is the
word in the hyperlinked document, and ack is the word either in the hyperlink text or
in the hyperlinked document. The number of words in each condition is greater than 0
(X, Y, Z ≥ 0).

In the inference process, the MCRDR-Classifier evaluates each rule node of the

knowledge base (KB). If a case is selected from the case list (CL), the system evalu-
ates rules from the root node and the inference result is provided by the last rule satis-
fied in a pathway. All children of the satisfied parent rule are evaluated, allowing for
multiple conclusions. The conclusion of the parent rule is only given if none of the
children are satisfied [10, 11]. The MCRDR method does not define any specific rule
base tree traversal algorithms, which depends on the implementation strategy. The
algorithm on which the MCRDR-Classifier is based is [19] and [11].

6 Knowledge Acquisition of the MCRDR- Classifier

The problem solver performs KA when a case has been classified incorrectly or is
missing a classification. The KA editor of the MCRDR-Classifier that is used for KA
process is illustrated in Fig. 4. The Knowledge Base (�) displays the current knowl-
edge base structure which is automatically maintained by the system. The location of
the rule is decided according to the rule type. If there is no classification recommenda-
tion and the problem solver wants to classify the current case, then the rule is created
under the root rule. If the problem solver wants to correct current recommendation by
using the refining rule and the stopping rule, the new rule is added at the end of cur-
rent firing rule to give new classification [19]. The classification structure (�) used in
the MCRDR-Classifier is the traditional folder structure. Any folder can be chosen to
specify correct classification and there are two action options. The “select” option is
used to create a refining rule and the “deselect” option is to create stopping rule. The

case viewer (�) displays case data handled by the KA editor. Case attributes are dis-
played in the case attribute viewer (�). Conditions that are chosen for the new rule are
displayed in the condition editor (�). Whenever new condition words are added,
cases that are fired by the current rule are displayed in the cases satisfied rules viewer
(�). These cases are validation cases, and the problem solver does not want to clas-
sify some of these cases. However, it is difficult to find conditions that exclude them.
To make KA convenient, the system generates different word lists in the case attribute
viewer whenever the excluding cases are selected (�). Therefore, the attributes in the
case attribute viewer are not the current case’s attributes but the different attributes of
current case compared to those of the chosen excluding cases. Unlike the traditional
MCRDR systems, the MCRDR-Classifier uses not only cornerstone cases but also
classified cases that are fired with new rule to generate a different list in the validation
process.

Fig. 4. Knowledge Acquisition Editor of the MCRDR-Classifier

7 Experiment Design

The experiment is designed to analyze KA behaviors in the real-world document
classification, an open-ended problem. This experiment was conducted by 20 Master
and Hounours course students at the University of Tasmania for four months from
August, 2005 ~ November, 2005. The WebMon system continually collected newly
updated documents from 9 well known news Websites, which were focused on infor-

�Knowledge
Base

�Classification
Structure

�Condition
Editor

�Case
Attributes

�Cases for
difference list

�Case
Viewer

�Cases fired by
the current rule

mation technology. Each participant could read the collected documents in real-time
and train their own MCRDR-Classifiers. The classification structure (folder structure)
of 86 folders was predefined for the experimental purpose. Each participant might use
part of all folders for the classification, not the whole classification structure, which
totally depended on each participant’s intention. In addition, the participants used
different number of documents based on his/her document filtering level and created
different KB by using his/her own MCRDR-Classifier.

8 Experiments Results

8.1 Overall Classification Results

In total 12,784 articles were collected during the experiment period. In overall
95.6% documents (12,304) were used by the participants. The lowest ratio was 87.6%
(BBC) and the highest ratio was 99.8% (ITNews). 13.0% documents were commonly
used by all participants, which varied form 5.1% to 22.4%. Compared to the ratio of
classified documents, the ratios of commonly used documents are very row. This is
caused by the differences in the participant’s document filtering level, which will be
further illustrated in Section 8.2. Table 1. summarizes monitoring Website list and
data set that used in this experiment.

Table 1. Monitoring Websites and Data Set used in the Experiment

 Web Site Monitoring
Duration

Number
of Docs

Classified
Docs %

Commonly
used Docs %

Australian 116 1,949 1,917 98.4% 437 22.4%
ITnews 116 1,646 1,643 99.8% 212 12.9%
ZDNet 116 1,028 1,024 99.6% 226 22.0%
CNN 116 409 380 92.9% 72 17.6%
BBC 82 651 570 87.6% 54 8.3%
eWEEK 81 1,838 1,795 97.7% 209 11.4%
Sacbee 81 1,228 1,152 93.8% 100 8.1%
CNet 81 3,248 3,065 94.4% 307 9.5%
ITWorld 81 787 758 96.3% 40 5.1%

Total 971 12,784 12,304 95.6% 1,657 13.0%
Note 1. Monitoring duration is a mean average.

8.2 Classification Results by the Participants

Used Documents. Each participant classified documents into multiple folders by
using the MCRDR-Classifier. Though the same monitored documents were provided
to the all participants, the document usage results are very different. Fig. 5. shows that
the number of classified documents differ amongst participants, the smallest number

being 1,775 and the largest number 21,045. The mean number is 11,693. The differ-
ences caused by two factors. Firstly, the document filtering levels are different among
the participants. That is, the documents that each participant felt sufficiently important
to classify were different among participants. Secondly, the multiple classifications of
each participant were also different among the participants because some participants
tended to classify document multiple classifications whereas others did it inversely.

0

5,000

10,000

15,000

20,000

25,000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Fig. 5. Number of Classified Documents

Used Folders. A total 86 hierarchical folders were used for this experiment: level
one (8), level two (40), level three (31), and level four (8). The numbers of folders
that were used for classification were different among participants. They varied from
14 to 73, with the mean number of used folders being 51.35. The most used folders
were in level 2, and the least used folders in level 4. There is no evident of the sym-
metric relationship between the number of used folder and the number of classified
documents. For example, though P8, P9, and P10 used a very similar number of fold-
ers their correspondent document use is very different (see Fig. 5 (b)).

0

10

20

30

40

50

60

70

80

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

Av
er

ag
e

Level 4

Level 3

Level 2

Level 1

(a) Folder Usage

0

5000

10000

15000

20000

25000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

Av
er

ag
e

Level 4

Level 3

Level 2

Level 1

(b) Documents in Folders

Fig. 6. Folder Usage by Participants

8.3 Knowledge Acquisition

Rules. On average, the participants created 254 rules for 51 folders with 579 con-
ditions to classify 11,693 documents. The minimum number of rule created was 59
(P13) and the maximum (P18, P19) 597. Documents per rule were 62, rules per folder
numbered 5.3, with conditions per rule being 2.3. To examine relationships between
document classification and rule creation, and between folder creation and rule crea-
tion, correlation values were calculated. The correlation between document classifica-
tion and rule creation (CRd,r) was 0.27 and folder (class) creation and rule creation
(CRf,r) 0.49.

Conditions. Participants were able to use three different types of condition words,

which were seen in title (Type 1), seen in body (Type 2), and seen in both title and
body (Type 3). Fig. 8. (a) illustrates each participant’s condition usage ratio of three
types of rules. Condition selecting depends on each participant’s rule construction
strategy. Whereas some participants mainly used title condition words (P5, P20),
others frequently employed all conditions words (P7, P10, P17).

0%

20%

40%

60%

80%

100%

P1 P2 P3 P4 P5 P6 P7 P8 P9
P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Type 3

Type 2

Type 1

Fig. 8. Participants’ Condition Usage Comparison

8 Conclusions

A new problem solving approach is required for open-end problems since the
open-ended problems differ from the close-ended problems. Real-world document
classification is an open-ended problem because there are no pre-defined classes and
cases, and it is possible to classify cases with various coexisting document classifica-
tions. We firstly examined the open-ended education experiences to obtain insights
into this matter. Active roles of the problem solver, multiple solutions for the same
problem and negotiating interactions between the problem solver and the learner were
extracted. The MCRDR knowledge acquisition method were employed to implement
an open-ended document classification system, called the MCRDR-Classifier. The
knowledge base evidently evolves incrementally by employing rule-exception based
knowledge representation. The domain experts, or even learners, can easily acquire or

construct domain knowledge by using cornerstone cases and difference list. The
MCRDR-Classifier supports not only multiple explanations (cases are classified into
one class because of different reasons) but also multiple classifications (a case is clas-
sified into multiple classes). We conducted experiments to examine knowledge acqui-
sition behaviors. Twenty participants used the MCRDR-Classifier to classify real-
world documents. The experiment results show that the participants have different
problem solving approaches for the open-ended document classification problem.

References

1. Hong, N.S., The Relationship Between Well-Structured and Ill-Structured
Problem Solving in Multimedia Simulation, in The Graduate School, College
of Education. 1998, The Pennsylvania State University.

2. Lynch, C.F., et al. Defining "Ill-Defined Domains"; A literature survey. in
Intelligent Tutoring Systems for Ill-Defined Domains. 2006. Jhongli, Taiwan.

3. Goel, V. Comparison of Well-Structured & Ill-Structured Task Environments
and Problem Spaces. in Fourteenth Annual Conference of the Cognitive Sci-
ence Society. 1992. Hillsdale, NJ: Erlbaum.

4. Cook, J., Bridging the Gap Between Empirical Data on Open-Ended Tuto-
rial Interactions and Computational Models. International Journal of Artifi-
cial Intelligence in Education, 2001. 12: p. 85-99.

5. Andriessen, J. and J. Sandberg, Where is Education Heading and How About
AI? International Journal of Artificial Intelligence in Education, 1999. 10: p.
130-150.

6. Mildred, L., G. Shaw, and J.B. Woodward, Modelling Expert Knowledge, in
Reading in Knowledge Acquisition and Learning: Automating the Construc-
tion and Improvement of Expert Systems, B.G. Buchanan and D.C. Wilkins,
Editors. 1993, Morgan Kaufmann Publishers: San Mateo, CA. p. 77-91.

7. Compton, P. and R. Jansen, A philosophical basis for knowledge acquisition.
Knowledge Acquisition, 1990. vol.2, no.3: p. 241-258.

8. Dillon, R.F. and R.R. Schmeck, Individual Differences in Cognition. Vol. 1.
1983, New York, USA: Academic Press, Inc.

9. Blandford, A.E., Teaching through Collaborative Problem Solving. Journal
of Artificial Intelligence in Education, 1994. 5(1): p. 51-84.

10. Kang, B., P. Compton, and P. Preston. Multiple Classification Ripple Down
Rules : Evaluation and Possibilities. in 9th AAAI-Sponsored Banff Knowl-
edge Acquisition for Knowledge-Based Systems Workshop. 1995. , Banff,
Canada, University of Calgary.

11. Compton, P. and D. Richards, Generalising ripple-down rules. Knowledge
Engineering and Knowledge Management Methods, Models, and Tools. 12th
International Conference, EKAW 2000. Proceedings (Lecture Notes in Arti-
ficial Intelligence Vol.1937), 2000: p. 380-386.

12. Compton, P., et al., Knowledge acquisition without analysis. Knowledge
Acquisition for Knowledge-Based Systems. 7th European Workshop, EKAW
'93 Proceedings, 1993: p. 277-299.

13. Kang, B.H., P. Compton, and P. Preston, Validating incremental knowledge
acquisition for multiple classifications. Critical Technology: Proceedings of
the Third World Congress on Expert Systems, 1996: p. 856-868.

14. Compton, P. and R. D. Extending Ripple-Down Rules. in 12th International
Conference on Knowledge Engineering and Knowledge Managements
(EKAW'2000). 2000. Juan-les-Pins, France.

15. Martinez-Bejar, R., et al., An easy-maintenance, reusable approach for
building knowledge-based systems: application to landscape assessment.
Expert Systems with Applications, 2001. vol.20, no.2: p. 153-162.

16. Kang, B.H., W. Gambetta, and P. Compton, Verification and validation with
ripple-down rules. International Journal of Human-Computer Studies, 1996.
vol.44, no.2: p. 257-269.

17. Park, S.S., et al. Automated Information Mediator for HTML and XML based
Web Information Delivery Service. in The 18th Australian Joint Conference
on Artificial Intelligence. 2005. Sydney, Australia.

18. Park, S.S., S.K. Kim, and B.H. Kang. Web Information Management System:
Personalization and Generalization. in the IADIS International Conference
WWW/Internet 2003. 2003.

19. Byeong Ho, K., Validating Knowledge Acquisition: Multiple Classification
Ripple Down Rules, in School of Computer Science and Engineering. 1995,
University of New South Wales.

20. Kim, Y.S., S.S. Park, and B.H. Kang. Noise Elimination from the Web
Documents by Using URL Paths and Information Redundancy. in IKE'06 -
The 2006 International Conference on Information and Knowledge Engi-
neering. 2006. Monte Carlo Resort, Las Vegas, Nevada, USA: CSREA Press.

Appendix 3. System Setup Manual

S C H O O L O F C O M P U T I N G , U N I V E R S I T Y O F T A S M A N I A

M C R D R R E S E A R C H G R O U P

iWeb SuiteTM User Manual
(Version 1.0)

Contents
1 Introduction 4

1.1 Aims 4

1.2 Users 4

1.3 Contents 4

2 System Architecture 5

2.1 System Overview 5

2.2 System Environment 5

3 System Installation and Configuration 7

3.1 Database Creation for the iWeb Suite™ 7

3.2 iWeb Suite™ Installation 7

3.3 iWebServer™ Configuration 8

3.4 Domain Registration 9

3.5 iWebClient™ Configuration 10

4 iWeb Server TM 11

4.1 System User Interface 11

4.2 Web Monitoring Procedure 11

5 iWeb Client TM 15

5.1 System User Interface 15

5.2 Inference Process of the iWeb Client TM 16

5.3 Knowledge Acquisition of the iWeb Client TM 18

5.4 Classification Procedure 19

6 iWeb Portal TM 21

6.1 Domain Name Configuration 21

6.2 Database Configuration 21

6.3 Default Section Configuration 21

7 Resources and Contact 22

7.1 PHP Program Language & Libraries 22

7.2 MySQL 22

7.3 Contact 22

8 Appendix: Database Tables 23

iWeb SuiteTM User Manual (Version 1.0)

Introduction 4

1 Introduction
1.1 Aims

The iWeb SuiteTM is a solution for the Web information management, which
integrates Web information change tracking, incremental document
classification, and automated Web portal generation technology. This manual
provides system management information about the iWeb SuiteTM
administration in the Windows and Linux environment.

1.2 Users

This manual can be used by

• Domain expert

• System administrator

• Developer

1.3 Contents

This manual aims to provide some basic information about the iWeb SuiteTM.
This manual includes following topics:

• System Architecture

• System Installation and Configuration

• Operation guidelines.

iWeb SuiteTM User Manual (Version 1.0)

System Architecture 5

2 System Architecture
2.1 System Overview

The iWeb SuiteTM consists of three sub‐systems – iWebServer, iWebClient, and
iWebPortal. Figure 1 illustrates the overall system architecture of the iWeb
SuiteTM

The iWebServer TM collects new information from the registered Web sites and
saves it to the database. Detailed explanation about this system will be given
Section 4.

The iWebClient TM supports incremental document classification for the
domain users. Each domain users who receive the monitoring results can use
this system independently. Detailed explanation about this system will be given
Section 5.

The iWebPortal TM supports easy construction of the web portal by using the
iWebClient. Detailed explanation about this system will be given Section 6.

Figure 1. iWeb SuiteTM Architecture

2.2 System Environment

OS
The iWebServerTM and the iWebClientTM run on the Microsoft Windows
operating system (2000 Server and XP). These two systems can be operated in

iWeb SuiteTM User Manual (Version 1.0)

System Architecture 6

one system or in the separated system. One iWebServerTM can be used by
multiple iWebClientTM systems.

The iWebPortalTM runs on any systems. However, we only tested with Apache
Web server in the Linux environment.

MySQL can be installed at any operating system environments.

Database
The iWeb SuiteTM uses MySQL (Version 4.1XXX) database for its data storage.
You can find more information about the MySQL is in its official Web site
(http://www.mysql.com).

Server Side Script Language
The iWebPortalTM is developed by using PHP (Version 5.0.2). You can find more
information about the PHP is in its official Web site (http://www.php.net).

Web Server
The iWebPortal TM use Apache Web Server (Version 2.0). You can find more
information about the Apache Web Server is in its official Web site
(http://httpd.apache.org/).

iWeb SuiteTM User Manual (Version 1.0)

System Installation and Configuration 7

3 System Installation and Configuration
3.1 Database Creation for the iWeb Suite™

You need to create a database that will be used by the iWeb SuiteTM. You can
create a database by using “create database DATABASE_NAME” in the
command line. Tables that used for the iWeb SuiteTM will be automatically
created when you create a “DOMAIN” in the iWebServer (see the 3.4 Domain
Registration)

Figure 2. Database Creation

3.2 iWeb Suite™ Installation

Unzip the WebSuite.zip file in the installation CD and copy the extracted files
(see Figure 3)into the “Document Root“ directory of Apache.

Figure 3. Extracted Files

iWeb SuiteTM User Manual (Version 1.0)

System Installation and Configuration 8

3.3 iWebServer™ Configuration

1. Run the iWebServer™ execution file
(DOCUMENT_ROOT/iWebServer/MonServ.exe).

2. Close “database connection error” dialog box.

3. Select “Option” menu (Tool>Option) to configure database

4. Select “Database” option from the option list.

5. Fill in the database information – Database Server IP, PORT number
(default: 3306), database username, database password, database name.

6. Check the configuration by clicking “Reconnect” button.

7. If there is no problem, click “OK” button and restart the iWebServer™.

Figure 4. Database Configuration

Note: Sometimes when you finish the iWebServer™, the system still run in the
background and incur execution problems of the iWebServer™. In that case,
you should run the “Window Task Manager” program and end the
“MonServ.exe” program and restart the iWebServer™ (see Figure 5)

Figure 5. End the “MonServ.exe” in the Window Task Manager

iWeb SuiteTM User Manual (Version 1.0)

System Installation and Configuration 9

3.4 Domain Registration

The “Domain” is the top level concept of information management in the iWeb
SuiteTM. User can choose any domain name. For example, if you want to collect
and manage information technology information from the Web, you can create
domain name like “it_new”. The domain will be used as part of the table name
(e.g., tbclassify_DOMAIN_NAME_article). The domain name should be lower
case and put the under when you want to make space in the domain name.
When you register domain name, the iWebServerTM automatically create the
tables that is used by other system of iWeb SuiteTM (see Figure 7).

1. Select Tool>Domain Manager from the iWebServerTM menu bar

2. Fill the domain name and click the “Add” button.

Figure 6. Domain Creation

Figure 7. Database Structure after “yangsokk” domain is created

iWeb SuiteTM User Manual (Version 1.0)

System Installation and Configuration 10

3.5 iWebClient™ Configuration

The configuration of the iWebClient™ is very similar to that of the
iWebServer™.

1. Run the iWebClient™ execution file
(DOCUMENT_ROOT/iWebClient/MonClassifier.exe).

2. Close “database connection error” dialog box.

3. Select “Option” menu (Tool>Option) to configure database

4. Select “Database” option from the option list.

5. Fill in the database information – Database Server IP, PORT number
(default: 3306), database username, database password, database name.

6. Check the configuration by clicking “Reconnect” button.

7. If there is no problem, click “OK” button and restart the iWebClient™.

iWeb SuiteTM User Manual (Version 1.0)

iWebServer TM 11

4 iWebServer TM
4.1 System User Interface

Figure 6 illustrates the main user interface of the iWebServer system. The left
pane displays the registered Web sites, which are grouped by specific topics
(e.g., Agriculture Fisheries and Forestry). The right upper pane shows newly
collected documents’ title, and the right bottom pane presents text of the
selected documents. This system differs from the RSS service because it does
not need any specific XML formats and it is based on automated client pull
technology. Newly collected documents can be accessed by using the
iWebClientTM.

Figure 8. User Interface of iWeb Server

4.2 Web Monitoring Procedure

4.2.1 Folder Creation

The iWebServer™ supports grouping of monitoring Web sites. To this end, user
can create any folder and add Web site under this folder. To create the folder,
select root node of monitoring Web site tree or any folder in this tree and click
the short‐cut menu for folder creation. When the following “new folder” dialog

iWeb SuiteTM User Manual (Version 1.0)

iWebServer TM 12

will appear, the user fill in the name of folder. User can move Web site folder to
folder as he/she wishes.

Figure 9. Folder Creation

4.2.2 Monitoring Site Registration

1. Click the new monitoring site add icon ().

2. Fill in the site name and monitoring interval time. Click “Next” button

iWeb SuiteTM User Manual (Version 1.0)

iWebServer TM 13

3. Click “Add” button

4. File in URL and check “Set Target” option. Click “OK” button.

5. Add known block URLs and click “Finish” button.

iWeb SuiteTM User Manual (Version 1.0)

iWebServer TM 14

4.2.3 Monitoring Start and Stop

The user can start or stop monitoring individual Web site by individual Web
Site or grouped Web sites.

1. Select Web site of Folders

2. Click short‐cut menu (see Figure 7) “Get Now” or “Stop”

4.2.4 Automated Monitoring

You can configure to start all Web site monitoring whenever the iWeb Server
starts by checking the “automatically start monitor engine when the system
starts”.

Figure 10. Automatic Start Option

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 15

5 iWebClient TM
5.1 System User Interface

Figure 11 illustrates the main user interface of the iWebClientTM, which consists
of three parts. The left pane shows the tracking Website list () that are selected
by the problem solver and the classification structure (). The problem solver
can choose his/her favorite tracking Websites that are maintained by
iWebServerTM. When the problem solver selects one Website in the list, newly
classified documents that are ordered by collected time are displayed in the
right upper pane (). When one document is selected, the content of the
document the inference results are displayed in the classification structure ()
by displaying downward arrow (s) and the right top corner of the content pane
(). The problem solver can see the hierarchical structure of the classification
by both the classification folder tree (CFT) and the folder path description in .
The conditions of fired rule sets are also displayed by selecting the condition
tap and also highlighted in the content. More detailed inference procedures are
explained in the following section. One important thing is that the iWebClientTM
supports multiple classifications. For example, there are two destine folders
(Mobile game and Handset Manufacturer) for the document “Mobile games
ʹstagnating,ʹ study claims”.

Figure 11. Main User Interface of the MCRDR‐Classifier

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 16

5.2 Inference Process of the iWeb Client TM

Basically, the inference process implementation of the iWebClientTM follows the
MCRDR method. In the iWebClientTM, the case is each hyperlink text in the
monitoring Webpage and hyperlinked document and its attributes are distinct
words in each text. The iWebServerTM continually revisits target Websites and
finds new hyperlink as newly updated information. The text that is wrapped by
<a> tag is used as “Title”. Though it may or may not match with the title of the
hyperlinked document, it is usually used to represent the hyperlinked
document. The hyperlinked document contains not only main content but also
noisy or redundant content such as advertisement, navigation or decorative
content. Though we can use other features such as Hyperlink and document
structure and these features may enhance classification performance, we only
use the main content as feature of the hyperlinked document, not use these
features in our system. Therefore, one of main issue is the content extraction
method and we employed a redundant word/phrase elimination method,
which is discussed in the other paper separately.

A case is defined by attributes as follows:

CASE = T B ∪

, where T is a distinct word set of hyperlink text and B is a distinct word set of
the main content of linked document. T and B are respectively defined as
follows:

 T = {t1, t2, …, tN}

 B= {b1, b2, …, bM}

, where N and M is the number of distinct word and N, M is greater that 0 (N,
M 0). ti and bj is a word in the hyperlink text and the main text of the
hyperlinked document.

≥

A rule structure is defined as follows:

 IF

 TC ⊂ T

AND BC B ⊂

AND (AC T or AC ⊂ B) ⊂

 THEN

 Classify into folder Fi

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 17

, where TC is a condition set for the hyperlink text, BC is a condition set for the
hyperlinked document, and AC is a condition set for the hyperlink text or the
hyperlinked document. Each set is defined as follows:

 TC = {tc1, tc2, …, tcX}

 BC = {bc1, bc2, …, bcY}

 AC = {ac1, ac2, …, acZ}

, where tci is the word in the hyperlink text, bcj is the word in the hyperlinked
document, and ack is the word either in the hyperlink text or in the hyperlinked
document. The number of word of each condition is greater than 0 (X, Y, Z 0). ≥

In the inference process, the iWebClientTM evaluates each rule node of
knowledge base (KB). If a case is selected from the case list (CL), the system
evaluates rules from the root node and inference result is provided by the last
rule satisfied in a pathway. All children of satisfied parent rule are evaluated,
allowing for multiple conclusions. The conclusion of the parent rule is only
given if none of the children are satisfied. However, the MCRDR method does
not define specific rule base tree traversal algorithm, it depends on the
implementation strategy. The inference algorithm of the iWebClientTM is
explained in Figure 12.

Figure 12. Inference Algorithm in the iWeb Client TM

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 18

5.3 Knowledge Acquisition of the iWebClient TM

The problem solver performs KA when a case has been classified incorrectly
or is missing a classification. The KA editor of the iWebClientTM that used for
KA process is illustrated in Figure 13. The Knowledge Base () displays current
knowledge base structure, which is maintained by the system. The locations of
rules decided according to the rule type. Firstly, when a Type 1 rule (new
independent rule) is created, the rule is added under the root rule. Secondly,
when a Type 2 rule (refining rule) is created, the rule is added at the end of
current firing rule to give new classification. Lastly, when a Type 3 rule
(stopping) is created, the rule is added at the end of path to prevent the
classification. The classification structure () is traditional folder structure. Any
folder can be chosen to specify correct classification and there are two options
for choosing. The “select” option is used for Rule Type 1 (new independent
rule) and 2(refining rule) and the “deselect” option is for the Rule Type 3
(stopping rule). The case viewer () displays case data that handled by the KA
editor. Case attributes are displayed in the case attribute viewer ().
Conditions that are chosen for the new rule are displayed in the condition
editor (). Whenever new condition words are added, cases that are fired by
the current rule are displayed in the cases satisfied rules viewer (). These
cases are validation cases. The problem solver does not want to classify some of
these cases. However, it is difficult to find conditions that exclude them. To
support easy KA, the system generates difference words lists in the case
attribute viewer whenever the excluding cases are selected (). Therefore, the
attributes in the case attribute viewer are not the current case’s attributes but
the different attributes of current case compared to those of the chosen
excluding cases. Unlike the traditional MCRDR systems, the iWebClientTM use
not only cornerstone cases but also classified cases that are fired new rule to
generate a difference list in the validation process.

Figure 13. Knowledge Acquisition Editor of the iWebClient TM

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 19

5.4 Classification Procedure

5.4.1 Login

When you use the iWeb Client, you need to type in username (account name)
and password (student ID) and select your domain (e.g., yangsokk). Then click
the “OK” button in the “select domain” dialog box and “database
configuration” box. When you login is successful, you can see the main user
interface (Figure 11).

Figure 14. Login to the iWebClient TM

5.4.2 Knowledge Acquisition

1. When the participant sees the unclassified or misclassified document,
select it from the document list.

2. Click the KA icon from menu bar or select “Add Rule and
Classification” from short cut menu.

Note. In this project, you don’t need to create folder in the classification
structure. Instead, you only use the pre‐defined classification structure.

You can see the Knowledge Acquisition interface (Figure 11).

3. Select an appropriate folder from the classification structure by selecting
folder and choosing menu from the short‐cut menu.

Note. If you want to refine or stop the current rule, select “Deselect” munu
from the short‐cut menu.

iWeb SuiteTM User Manual (Version 1.0)

iWebClient TM 20

4. Select condition word from the case attribute list. If you select one word
from this list, the “Condition Type” dialog box appears. You should choose
one of three types (Head, Body, Anywhere).

5. If you choose condition type and click “OK” button, this condition appear

in the condition editor box. You can add any number of conditions by
repeating

Note. If you select conditions, the system retrieves all cases that are fired
current condition in the “Cases satisfied by rules” panel. If you don’t want to
classify some cases in this specified folder, you can choose those cases from
this list. The selected cases will be shown in the “Cases for difference list”
panel and the difference list is generated in the “Case attribute” panel. If you
select condition words from this list, the selected cases will be excluded.

6. If you complete condition editing, then click “Create Rule” button.

7. If you want to classify this case into other folder, repeat Step 3 ~ Step 6.
Otherwise, finish knowledge acquisition process by clicking “Close” button.

iWeb SuiteTM User Manual (Version 1.0)

iWebPortal TM 21

6 iWebPortal TM
You need to change config.php (Document Root/conf/config.php) and
func_db.php (Document Root/inc/v09/func_db.php) files.

6.1 Domain Name Configuration

You need to change the domain name that you want to use in the portal.
//DOMAIN NAME change

$GLOBAL_VARIABLE[Domain] = "it_news";

6.2 Database Configuration

You need to change database connection information as that used in the
iWebSuite™.
function db_connecter()

{

 //change user name and password

 $db_connecter = mysqli_connect("localhost", "user",
"password");

 //change database name

 mysqli_select_db($db_connecter, "iWebEnterpriseEx");

 return $db_connecter;

}

6.3 Default Section Configuration

You need to create default section configuration data by using the “Document
Root/docs/SectionConfig.sql”.

iWeb SuiteTM User Manual (Version 1.0)

Resources and Contact 22

7 Resources and Contact
7.1 PHP Program Language & Libraries

• Official Web Site: http://www.php.net/

• Programming Resources

o PEAR ‐ PHP Extension and Application Repository
http://pear.php.net/

o ZEND – A PHP Company
http://www.zend.com/

o PHP Class Repository
http://www.phpclasses.org/

• Articles & Tutorials

o DevShed
http://www.devshed.com/c/b/PHP/

o PHP Developer
http://www.phpdeveloper.org/

o O’Leilly PHP Resource
http://www.onlamp.com/pub/q/all_php_articles

• Tree Library

o PHP Layers Menu
http://phplayersmenu.sourceforge.net/

7.2 MySQL

• Official Site: http://www.mysql.com/

7.3 Contact

• Technical Support: Yang Sok Kim (yangsokk@utas.edu.au)

iWeb SuiteTM User Manual (Version 1.0)

http://www.php.net/
http://pear.php.net/
http://www.zend.com/
http://www.devshed.com/c/b/PHP/
http://www.phpdeveloper.org/
http://www.onlamp.com/pub/q/all_php_articles
http://phplayersmenu.sourceforge.net/
http://www.mysql.com/
mailto:yangsokk@utas.edu.au

Appendix: Database Tables 23

8 Appendix: Database Tables
 (1) Tables used by MonServer

tbmonservarticle Article Data Table for MonServ

 Column Type Description Value and Meaning
 ArticleID BIGINT(20) Article ID Number Unique ID Number
 MonSiteID BIGINT(20) Monitoring Site ID Number Unique ID Number

 bRead BIGINT(20) Article Read,Unread for
Monsitoring Server 0:Unread, 1:Read

 Type BIGINT(20) Article Type for Monitoring Server 0:Normal Article, 2:Deleted
Article

 Title VARCHAR(255) Article Headline
 URL VARCHAR(255) Original Article URL text
 GetTime DATETIME Collected Time datetime

 Body TEXT Article Text text

tbmonservsitetree Site Tree Table for MonServ

 Column Type Description Value and Meaning
 MonSiteID BIGINT(20) Monitoring Site ID Number Unique ID Number
 MonSitePID BIGINT(20) Parent MonSiteID Number ID Number
 Type BIGINT(20) Tree Node Type 0:Folder, 1:Site

 MonSiteName VARCHAR(255) Monitoring site Title or Folder
Name

 Language BIGINT(20) Providing language from this site 0:English, 1:Korean, 2:Japanese
 nTime BIGINT(20) Monitoring Time
 Status BIGINT(20) Monitoring Agent Status 0:Working, 1:Collecting

 Description TEXT deacription of Monitoring Site

tbmonservsite Site Informain Table

 Column Type Description Value and Meaning
 OneSiteID BIGINT(20) Single Site ID Number Unique ID Number
 MonSiteID BIGINT(20) Monitoring Site ID Number ID Number
 MonSiteURL VARCHAR(255) Single Site Original Site
 Method BIGINT(20) Sending Data Method
 Enctype BIGINT(20)
 PurposeType BIGINT(20)
 SetMonitoring BIGINT(20)
 Sequent BIGINT(20)

tbmonservuserdetail User Information Table

 Column Type Description Value and Meaning
 ID BIGINT(20)
 UserID VARCHAR(16)

 Passwd VARCHAR(41) Encrypted by mySQL
 PASSWORD() Function

 FirstName VARCHAR(255)
 SecondName VARCHAR(255)
 Email VARCHAR(255)
 JoinDate DATETIME

 Availability ENUM('Y','N')

iWeb SuiteTM User Manual (Version 1.0)

Appendix: Database Tables 24

tbmonservuserdomain User and Domain Relation Table

 Column Type Description Value and Meaning
 UserID VARCHAR(16)
 DomainName VARCHAR(255)
 Privilege BIGINT(20)
 LoginStatus ENUM('Y','N')
 SuperUser ENUM('Y','N')

 RegisterDate DATETIME

tbmonservdomainenv Domain Information Table

 Column Type Description Value and Meaning
 DomainID BIGINT(20)
 DomainName VARCHAR(255)

 RegisterDate DATETIME

 For mySQL DB Connection
 mySQL Server Address seoul.comp.utas.edu.au
 mySQL User Name sspark

 mySQL User
Password **********

 mySQL Database
Name iWebKXA459

 For Classification
 Domain sspark
 User Name sspark
 User Password **********
 * Please, Do not miss schema of Classifier Table (next sheet), you need it more than this sheet.

(2) Tables used by MCRDR‐Classifier

Domain is your user name
 ex) my user name is sspark
 so, my table is tbclassify_sspark_article
 tbclassify_sspark_articlefolder
 and so on

tbclassify_DOMAIN_article Domain Article indexing Table
 Column Type Description Value and Meaning
 ArticleID BIGINT(20) Article ID Number

 TypeID BIGINT(20) Article Attribute

0:Unclassified Article,
1:Classified Article,
2:Deleted Article (Trash
bin)

 bRead BIGINT(20) Article Read,Unread for MonClassifier
 Kwd VARCHAR(255) DO NOT USE (Meaning is nothing)
 ClassifiedDate DATETIME DO NOT USE (Meaning is nothing)
 HitCount BIGINT(20) From Web Hit Count

 TopNews ENUM('Y','N') Selected by web admin
for main headline article

Y:top news article,
N:just nomal article

 ImgFileName VARCHAR(255) Added by web admin
if Article including a
picture,
 image file name

 ImgType VARCHAR(255) Added by web admin
if Article including a
picture,
 image file name

iWeb SuiteTM User Manual (Version 1.0)

Appendix: Database Tables 25

 sIMG TEXT Added by web admin image file data
 bIMG TEXT Added by web admin image file data

tbclassify_DOMAIN_articlefolder Relation table between Article and
Folder

 Column Type Description Value and Meaning
 ArticleID BIGINT(20) Article ID Number
 FolderID BIGINT(20) Folder ID Number

 ManualClassified ENUM('Y','N')

Y: Classified Article by
 MonClassifier manually,
N:Classified Article
 Automatically

 ClassifiedDate DATETIME Classified Date and Time

tbclassify_DOMAIN_foldertree Folder Tree Table
 Column Type Description Value and Meaning
 FolderID BIGINT(20) Folder ID Folder ID Number
 FolderPID BIGINT(20) Parent Folder ID Folder Parent ID Number
 FolderName VARCHAR(255) Folder Name Folder Name
 Description VARCHAR(255) Folder Description
 RegisterDate DATETIME Created datetime
 Enable ENUM('Y','N') Folder Enable or not Y:Enable, N:Disable
 Attribute ENUM('N','E','X') DO NOT USE(attribute for folder)

tbclassify_DOMAIN_monsitekwd (DO NOT USE) Site Keyword Table
 Column Type Description Value and Meaning

tbclassify_DOMAIN_monsitekwdtree MonClassifier Site Tree
 Column Type Description Value and Meaning
 ItemID BIGINT(20) Tree Item Node ID Node Item ID number
 ItemPID BIGINT(20) Tree Item Node Parent ID
 ItemName VARCHAR(255) Node Name Item Name
 Description VARCHAR(255) Node Description
 ItemType BIGINT(20) Node Item Type 5:Folder, 6:Site

 MonSiteID BIGINT(20) Monitoring Site ID Site ID in Monitoring
Server

 PauseCollect ENUM('Y','N') Stop providing article

Y: Stop providing article
 from this site,
N: getting article from
 this site continually

 ClassifyType BIGINT(20) Classification Mode 0:Don't Classification,
1:Auto Classification

tbclassify_DOMAIN_rulecondition Condition Table with Rule relation
 Column Type Description Value and Meaning
 ConditionID BIGINT(20) Condition ID Condition ID
 Condition VARCHAR(255) Condition Name Single condition Keyword

 ConType BIGINT(20) Condition Type
0:Keyword in the Head,
1:Keyword in the Body,
2:Keyword in Anywhere

 RuleID BIGINT(20) Rule ID
 RegisterDate DATETIME Register Date and Time

tbclassify_DOMAIN_ruletree Rule Tree Table
 Column Type Description Value and Meaning
 RuleID BIGINT(20) Rule ID Number
 RulePID BIGINT(20) Rule Parent ID Number

iWeb SuiteTM User Manual (Version 1.0)

Appendix: Database Tables 26

 RuleType BIGINT(20) Rule Type
0: Nomal rule,
1: Stop Rule(doesn't have
 conclusion folder ID)

 ConclusionID BIGINT(20) Conclusion Folder ID Number

 CornerstoneCaseID BIGINT(20) Article ID when you create a rule
with this article

 RegisterDate DATETIME Register Date and Time register date and time

iWeb SuiteTM User Manual (Version 1.0)

	1
	1 Executive Summary
	 2. Objectives
	3. System Report
	 4. Abstract
	5. Personnel
	6. Publications: Papers are attached in Appendix
	7. Interactions
	Appendix 1. The paper published in ITNG
	 Appendix 2. The paper under review in AI 2006
	 Appendix 3. System Setup Manual
	User Manual.pdf
	1 Introduction
	1.1 Aims
	1.2 Users
	1.3 Contents

	2 System Architecture
	2.1 System Overview
	2.2 System Environment

	3 System Installation and Configuration
	3.1 Database Creation for the iWeb Suite™
	3.2 iWeb Suite™ Installation
	3.3 iWebServer™ Configuration
	3.4 Domain Registration
	3.5 iWebClient™ Configuration

	4 iWebServer TM
	4.1 System User Interface
	4.2 Web Monitoring Procedure
	4.2.1 Folder Creation
	4.2.2 Monitoring Site Registration
	4.2.3 Monitoring Start and Stop
	4.2.4 Automated Monitoring

	5 iWebClient TM
	5.1 System User Interface
	5.2 Inference Process of the iWeb Client TM
	5.3 Knowledge Acquisition of the iWebClient TM
	5.4 Classification Procedure
	5.4.1 Login
	5.4.2 Knowledge Acquisition

	6 iWebPortal TM
	6.1 Domain Name Configuration
	6.2 Database Configuration
	6.3 Default Section Configuration

	7 Resources and Contact
	7.1 PHP Program Language & Libraries
	7.2 MySQL
	7.3 Contact

	8 Appendix: Database Tables

